Functional coupling between sodium-activated potassium channels and voltage-dependent persistent sodium currents in cricket Kenyon cells.
نویسندگان
چکیده
In this study, we examined the functional coupling between Na(+)-activated potassium (KNa) channels and Na(+) influx through voltage-dependent Na(+) channels in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Single-channel activity of KNa channels was recorded with the cell-attached patch configuration. The open probability (Po) of KNa channels increased with increasing Na(+) concentration in a bath solution, whereas it decreased by the substitution of Na(+) with an equimolar concentration of Li(+). The Po of KNa channels was also found to be reduced by bath application of a high concentration of TTX (1 μM) and riluzole (100 μM), which inhibits both fast (INaf) and persistent (INaP) Na(+) currents, whereas it was unaffected by a low concentration of TTX (10 nM), which selectively blocks INaf. Bath application of Cd(2+) at a low concentration (50 μM), as an inhibitor of INaP, also decreased the Po of KNa channels. Conversely, bath application of the inorganic Ca(2+)-channel blockers Co(2+) and Ni(2+) at high concentrations (500 μM) had little effect on the Po of KNa channels, although Cd(2+) (500 μM) reduced the Po of KNa channels. Perforated whole cell clamp analysis further indicated the presence of sustained outward currents for which amplitude was dependent on the amount of Na(+) influx. Taken together, these results indicate that KNa channels could be activated by Na(+) influx passing through voltage-dependent persistent Na(+) channels. The functional significance of this coupling mechanism was discussed in relation to the membrane excitability of Kenyon cells and its possible role in the formation of long-term memory.
منابع مشابه
Functional coupling between sodium - activated potassium channels and 1 voltage - dependent persistent sodium currents in cricket Kenyon cells
13 14 In this study, we examined the functional coupling between Na+-activated 15 potassium (KNa) channels and Na+-influx through voltage-dependent Na+ 16 channels in Kenyon cells isolated from the mushroom body of the cricket 17 Gryllus bimaculatus. Single channel activity of KNa channels was recorded 18 with the cell-attached patch configuration. The open probability (Po) of KNa 19 channels i...
متن کاملA novel GABAergic action mediated by functional coupling between GABAB-like receptor and two different high-conductance K+ channels in cricket Kenyon cells.
The γ-aminobutyric acid type B (GABA(B)) receptor has been shown to attenuate high-voltage-activated Ca(2+) currents and enhance voltage-dependent or inwardly rectifying K(+) currents in a variety of neurons. In this study, we report a novel coupling of GABA(B)-like receptor with two different high-conductance K(+) channels, Na(+)-activated K(+) (K(Na)) channel and Ca(2+)-activated K(+) (K(Ca))...
متن کاملIonic currents in two strains of rat anterior pituitary tumor cells
The ionic conductance mechanisms underlying action potential behavior in GH3 and GH4/C1 rat pituitary tumor cell lines were identified and characterized using a patch electrode voltage-clamp technique. Voltage-dependent sodium, calcium, and potassium currents and calcium-activated potassium currents were present in the GH3 cells. GH4/C1 cells possess much less sodium current, less voltage-depen...
متن کاملProperties and functional role of voltage-dependent potassium channels in dendrites of rat cerebellar Purkinje neurons.
We characterized the properties and functional roles of voltage-dependent potassium channels in the dendrites of Purkinje neurons studied in rat cerebellar slices. Using outside-out patches formed <or=250 microm away from the soma, we found that depolarization-activated potassium channels were present at high density throughout the dendritic tree. Currents required relatively large depolarizati...
متن کاملMonoaminergic modulation of the Na+-activated K+ channel in Kenyon cells isolated from the mushroom body of the cricket (Gryllus bimaculatus) brain.
Recent studies have suggested that octopamine (OA) and dopamine (DA) play important roles in mediating the reward and punishment signals, respectively, in olfactory learning in insect. However, their target molecules and the signaling mechanisms are not fully understood. In this study, we showed for the first time that OA and DA modulate the Na+-activated K+ (KNa) channels in an opposite way in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 114 4 شماره
صفحات -
تاریخ انتشار 2015